
The FermiGrid
High Availability

System

Dan Yocum
Fermilab

February 21, 2008

Introduction

● What is FermiGrid
● Why Does FermiGrid Need to be Highly

Available
● How We Made FermiGrid Highly Available
● Testing FermiGrid High Availability
● The Cost of Building FermiGrid High

Availability
● Future Work for FermiGrid High Availability
● Conclusion

What is FermiGrid

● Virtual Organization Management Server (VOMS)
– Attaches extended key attributes to x509 certificates
– fermilab, dzero, sdss, des, gadu, nanohub, ilc, lqcd, i2u2,

osg
● Sitewide Globus Gatekeeper

– CMSWC1, CMSWC2, CMSWC3, CDFOSG1, CDFOSG2,
CDFOSG3, CDFOSG4, D0CABOSG1, D0CABOSG2,
GPGRID, et al.

● Grid User Management Server (GUMS)
– Maps every user to a local UID

● Compute and storage resources
– Peak of 1.1M mappings per day

● Site AuthoriZation Server (SAZ)
– Authorizes grid batch processing jobs
– Peak of 300K authorizations per day

CMS
WC2

CDF
OSG1

CDF
OSG2

D0
CAB1

GP
Grid

VOMS
Server

SAZ
Server

GUMS
Server

D0
CAB2

CMS
WC1

CMS
WC3

VOMRS
Server

GP
MPI

Certificate
Authority

CMS dCachePublic dCache

21
3

6a

4

5

7a 8

6b

7b

Fermilab Border

1 – User obtains x509 certificate (one time only – renew periodically)
2 – User registers cert with VO via VOMRS, requests group, subgroup, and role (one time only – can update)
3 – VOMRS syncs to VOMS (every 30 minutes)
4 – GUMS pulls DN+FQAN from VOMS (every 60 minutes)
5 – User obtains voms proxy certificate (when necessary)
6a – User submits job to FermiGrid gateway
7a – Gatekeeper maps DN+FQAN against GUMS
8 – Gatekeeper authorizes user against SAZ
9 – Gatekeeper forwards job to appropriate grid cluster
alternative:
6b – accesses dCache via SRM
7b – dCache maps DN+FQAN against GUMS via gPlazma

Only accessible within fnal.gov

9

Why does FermiGrid need to be
Highly Available

● Without VOMS extended attributes VO
members can't map to local UID

● All compute jobs on all worker nodes are
mapped by GUMS

● All compute jobs on all worker nodes are
authorized by SAZ

● All file access requests to CMS and public
dCache systems are mapped by GUMS

● Average of 10,000 mappings per hour!
● These services are critical to data access

and data analysis!

How We Made FermiGrid
Highly Available

● Make services fault tolerant
– Replicate data and services, add failover

capabilities (aka active-passive)
– Vulnerable to overloading, service time-outs

● Make services load balanced
– Replicate data and services, add load balancer

(aka active-active)
– Solves the (N-1) system failure problem
– Solves the overloaded system problem, scales

linearly with number of systems

How We Made FermiGrid
Highly Available

● More specifically
– Multiple systems, currently 2 physical machines

● Hardware details later...
– Multiple Virtual Machines on each physical

machine, currently 4 (tune in Feb 28, 2008)
– Replicate data across systems

● Shared-nothing: no shared FS, no FC, no NFS
– Replicate services on multiple machines

● Without modifying source code
– Add HA abstraction layer

● Single point of contact presented to clients
– voms.fnal.gov, gums.fnal.gov, saz.fnal.gov, fg-mysql.fnal.gov

● Multiple servers on the backend
– fg5x1/fg6x1, fg5x2/fg6x2, fg5x3/fg6x3, fg5x4/fg6x4

How We Made FermiGrid
Highly Available

● Currently 2 physical machines
– Dell 2950
– Dual core, dual CPU, 3GHz
– 16GB RAM
– Dual Gigabit ethernet NICs
– 150GB RAID 1
– Redundant Power Supplies

● Xen – covered Feb 28 by Steve Timm
– fermigrid5 hosts fg5x1, fg5x2, fg5x3, fg5x4
– fermigrid6 hosts fg6x1, fg6x2, fg6x3, fg6x4

How We Made FermiGrid
Highly Available

Active fg5x1

Active fg5x2

Active fg5x3

Active fg5x4

Active fermigrid5

Xen Domain 0

Active fg6x1

Active fg6x2

Active fg6x3

Active fg6x4

Active fermigrid6

Xen Domain 0

VOMSVOMS

GUMS GUMS

SAZ SAZ

MySQLMySQL

Xen VM 1 Xen VM 1

Xen VM 2 Xen VM 2

Xen VM 3 Xen VM 3

Xen VM 4 Xen VM 4

LVS (Active) LVS (Standby)

How We Made FermiGrid
Highly Available

● MySQL Replication
– Investigated several technologies

● MySQL Cluster
● drbd – distributed remote block device
● mysqlhotcopy
● mysqldump + rsync
● Multi-master replication (requires MySQL >v5.0.2)

– Decided on Multi-master replication
– Scales well to 10 systems

● currently only using 2
– Near real-time replication, 1.1ms for 1KB record
– Database server outages handled correctly

● Logs replayed after server rejoins chain

How We Made FermiGrid
Highly Available

● MySQL Replication, cont'd
– Complete failure requires full copy (obviously)
– >2 systems require special techniques to close

the circular chain in the event of failure
● Service Replication

– 2 VOMS “servers”, one each on fg5x1 & fg6x1
● Each machine serves 12 VOs

– 2 GUMS servers, one each on fg5x2 & fg6x2
– 2 SAZ servers, one each on fg5x3 & fg6x3
– All services use replicated MySQL servers on

fg5x4 and fg6x4
– No source code modifications

How We Made FermiGrid
Highly Available

● High Availability and Load Balancing
– Investigated several technologies

● Heartbeat (active-passive)
● Round-robin DNS (not supported at Fermi, $$)
● Linux Virtual Server (LVS)

– Selected Linux Virtual Server
● Piranha product from Red Hat
● Use Direct Routing (LVS-DR) method

– Listens on voms.fnal.gov, gums.fnal.gov,
saz.fnal.gov, fg-mysql.fnal.gov

– Re-directs connections based on IP+port to
backend “real servers”

● Uses weighted least connections (WLC) to schedule
connection requests

– Other algorithms available

How We Made FermiGrid
Highly Available

● High Availability and Load Balancing, cont'd
– In LVS-DR, real servers respond directly to client
– LVS “pings” services for availability

● Removes service from scheduling if unavailable
● Adds service back in when available

– LVS master server is fermigrid5
– LVS backup server is fermigrid6

● Active-passive configuration
● Failover in 6 seconds
● Active connections to backend servers are maintained

– If a service or real server fails during an open
connection, the connection is lost.

How We Made FermiGrid
Highly Available

VOMS GUMS SAZ

LVS

LVS

Client

LVS

LVS

GUMS SAZVOMS

MySQL

MySQL

active

active

active

active

active

active

active

active

active

active

backup

backup

Note 1: All network connections are on the public network
Note 2: LVS directors displayed separately for convenience – they are the same in reality

Testing FermiGrid
High Availability

● Each service tested for load, stability, fault
tolerance before deploying in production
– 25 clients

● GUMS successfully mapped at 112Hz, 9.7M/day
– System load – 9.2, CPU – 92%

● SAZ successfully authorized at 12Hz (1.1M/day)
– System load – 12, CPU – 100%

● VOMS works
– No stress testing performed – only 1,800 requests/day

● MySQL successfully queried at 125Hz (10.8M/day)
– System load – 0.2, CPU – 10%

● Each service performed without fault for many hours
under these extreme loads

Testing FermiGrid
High Availability

– Fault tolerance testing was successful
● Simulated failures of VOMS, GUMS, and SAZ

– Disabled network
● New requests not routed to failed server

– Re-enabled network
● server added back to the pool for scheduling

– Open connections during service failure are lost.
● No cheap and easy way to migrate TCP syn/ack

sequences to another real server.
● Affected number of connections is very small (1-2)

● Simulated failure of MySQL server
– After re-enabling server, transaction logs replayed

automatically
● Simulated LVS failure

– Hot standby LVS server successfully took over in 6 seconds
– Open connections maintained across failover

The Cost of Building FermiGrid
High Availabilty

● Hardware
– 2 Dell 2950s - $18,975.00

● Software
– Open Source Software - $0

● Manpower
– Approximately 50% FTE

The Cost of Building FermiGrid
High Availabilty

● Timetable
– Equipment received on Jun 5, 2007
– OS install and Xen work started early Jul, 2007
– Load balancing work started on Aug 23, 2007
– MySQL replication completed Aug 24, 2007
– VOMS install completed Sep 27, 2007
– GUMS install completed Sept 28, 2007
– SAZ and LVS installs completed mid Oct, 2007
– All testing completed Nov 2, 2007
– All services placed into production Dec 3, 2007
– Documentation written in parallel with work

performed

Future Work for FermiGrid
High Availability

● Making the following services highly
available are dependent on furlough
schedules and available funds
– Squid
– Ganglia
– syslog-ng
– Myproxy
– Condor
– Globus gatekeeper

Conclusion

● FermiGrid is the site job submission portal
– Provides authentication and authorizations for all

compute jobs and dCache access
● FermiGrid must be available at all times

– 5,000 – 50,000 “jobs” per hour depend on
FermiGrid services being available

● MySQL multi-master replication and Linux
Virtual Server technology provides a stable,
fault tolerant and highly available system

Conclusion

● Testing we have performed shows FermiGrid
HA system is stable and capable of providing
10x our current needs
– Scaling up only requires more hardware

● Cost of LVS is much, much less than a Cisco
Round-robin DNS blade.

Bonus Material

● More LVS details
– 3 modes of operation

● Network address translation (NAT)
– Real Servers live on a private LAN
– All traffic flows through LVS director node - bottleneck!

● Tunneling using IP encapsulation
– Real Servers live on any public network, LAN or WAN
– Good for geographically separated Real Servers
– Real Servers answer directly to client – no bottleneck
– Real Servers must be able to un-encapsulate IP packets

● Direct Routing
– Real Servers and Director mustmust live on same physical

subnet
– Director re-writes MAC in address frame and transmits on

LAN
– Real Servers respond directly to client – no bottleneck

Bonus Material

● More LVS details
– Director maintains a hash table of open

connections
● Hash table is mirrored to backup LVS director

– For long lived, transactional, and SSL
connections, use persistence

– Solving the ARP problem
● Option A: use Transparent Proxy on Real Servers

– Virtual Service IP (VIP) is not actually running on Real
Server

– Configured using iptables
● Option B: use a real IP on a hidden interface (lo:0)

– Enable net.ipv4.conf.all.arp_ignore to not respond to arp
requests on VIP interface

Bonus Material

● Multi-homed SSL web servers on the same
physical system
– Can't use Transparent Proxy – must use IP on

hidden interface
● For >1 web server with separate hostnames running on

the same machine, apache must bind to the IP of the
service running (i.e., Listen 1.2.3.4)

– voms.opensciencegrid.org
– voms.fnal.gov

● Separate VirtualHost directives containing the correct
x509 service certificate with the appropriate hostname
in the CN must be specified for each IP apache listens
on.

Bonus Material

● Issues with multi-master MySQL replication
– External data (i.e., on the filesystem) referenced

within the MySQL database are not replicated
● Use rsync

– Replication across timezones, national
languages, etc. can cause problems

● All our servers are local
– Auto incrementing column problem

● Use auto_increment_increment (10)
● Use auto_increment_offset (1,2,3,...)

